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The cause for the accelerated expansion of the Universe poses one of the most fundamental ques-
tions in physics today. In the absence of a compelling theory to explain the observations, we first
have to characterize the phenomenon. If we assume that the acceleration is caused by some form of
dark energy, it can be described by its dark energy equation of state w. It is a major aim of ongoing
and upcoming cosmological surveys to measure the dark energy equation of state and a possible time
dependence at high accuracy. Since we cannot measure w(z) directly, we have to develop powerful
reconstruction methods to extract w(z) reliably with controlled error bars. We have recently intro-
duced a new reconstruction method for w(z) based on Gaussian process modeling. This method can
capture non-trivial time-dependencies in w(z) and most importantly yields controlled and unbaised
error estimates. In this paper we extend the method to include a diverse set of measurements:
baryon acoustic oscillations, cosmic microwave background measurements, and supernova data. We
analyze currently available data and show constraints on w(z). We find that current observations are
in very good agreement with a cosmological constant. In addition we explore how well our method
captures nontrivial behavior of w(z) by analyzing simulated data assuming high-quality data from
future surveys. We find that baryon acoustic oscillation measurements by themselves already lead to
remarkably good reconstruction results and the combination of different high-quality probes allows
us to reconstruct w(z) very reliably with small error bounds.

PACS numbers: 98.80.-k, 02.50.-r

I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe little more than a decade ago [1, 2] was
a major surprise. Since then, many efforts to un-
derstand the underlying cause have been initiated
(e.g. the Baryon Oscillation Spectroscopic Survey
(BOSS) [3], WiggleZ [4], the Dark Energy Survey (DES,
https://www.darkenergysurvey.org/), the Large Synop-
tic Survey Telescope (LSST) [5]) and proposed (e.g. Big-
BOSS [6], the Wide Field Infrared Survey Telescope
(WFIRST) [7], Euclid [8]). These effort focus on a set of
diverse cosmological probes (supernovae, baryon acous-
tic oscillations, clusters of galaxies, weak lensing, etc.) to
get the best possible observations to solve this puzzle.

The two currently most popular explanations are a
form of dark energy or a modification of Einstein’s the-
ory on the largest scales. We will focus in this paper on
dark energy as the cause for the accelerated expansion.
The simplest way to realize a dark energy is via a cos-
mological constant with a dark energy equation of state
w = p/ρ = −1. A major concern about the cosmological
constant is its theoretical underpinning. If we assume
that the origin is due to a vacuum energy, the predicted
value is incorrect at the order of 1060. Therefore, a more
natural realization of dark energy might be a dynami-
cal field, similar to the inflaton that is believed to drive
the very early rapid expansion of the Universe. Such a

dynamical field, described for example by quintessence
models [9], would lead to a non-constant dark energy
equation of state w(z). It is therefore one of the ma-
jor aims of ongoing and upcoming dark energy mission
to measure w(z) and its time variation with high accu-
racy. If w(z) is presented via a simple parametrization
w(z) = w0 − waz/(1 + z) [10, 11], current predictions
for future surveys promise measurements of the constant
part at the 1% level accuracy and of the time varying
leading part at the 10% level. At present, the best mea-
surements are accurate at 10% with respect to w0 and
we have no strong constraints yet on the time varia-
tion [12, 13].

With the prospect of high-accuracy measurements
from supernova (SN) surveys and complementary large-
scale structure probes such as baryon acoustic oscillations
(BAO) it is desirable to develop an accurate reconstruc-
tion method with reliable error bars that allows us to
extract the dark energy equation of state from different
measurements. While the earlier focus in the field was on
parametric methods [10, 11, 14], non-parametric methods
are becoming more popular [15]. The major advantage of
non-parametric models is that they should be less biased
since the assumptions on the functional form for w(z) is
not pre-selected. A possible disadvantage might be that
if the data quality is not very good, the non-parametric
approaches might not provide much information about
w(z). This in principle is also an advantage: if the data
does not have enough information it is better to obtain



very uncertain results with large error bars than a pre-
diction which might be biased (since the functional form
assumed for w(z) is incorrect) without this bias being
reflected in the error bars.

In this paper, we discuss a reconstruction method that
we recently introduced based on Gaussian process (GP)
modeling [16, 17]. A GP is a stochastic process and each
realization is a random draw from a multivariate Nor-
mal distribution. It is characterized by a mean and a
covariance function, that are defined by a small number
of parameters. Bayesian estimation methods are used
to determine the parameters of the GP model together
with any other physics parameters. Therefore, the fi-
nal form of the GP model is informed by the data itself.
The form of the covariance function is general enough
to accommodate a large variety of possible outcomes for
w(z). The only assumption made is that w(z) is some-
what smooth and continuous. If the underlying cause
for the accelerated expansion is due to a physically well
motivated reason this assumption is justified. We extend
the approach described in detail in Ref. [16] to include
different observational probes of w(z), namely supernova
measurements, cosmic microwave background (CMB) ob-
servations, and BAO results. We first carry out an analy-
sis of currently available data. We find, not surprisingly,
that our predictions are in good agreement with a cos-
mological constant. Using simulated data, we explore the
ability to extract variations of w(z) from a cosmological
constant with improving accuracy and statistics of the
data. The inclusion of the additional BAO and CMB
measurements greatly help to improve these predictions.

The paper is organized as follows. First, we discuss
in Section II the different data sources we include in our
analysis, namely, supernova, CMB, and BAO measure-
ments. In Section III we describe our GP model based
reconstruction method. We carry out an analysis of cur-
rently available data in Section IV. We demonstrate that
the method will allow us to extract variations in the dark
energy equation of state by using simulated data in Sec-
tion V. Finally, we conclude in Section VI.

II. DARK ENERGY EQUATION OF STATE

FROM DIVERSE DATA SETS

Type Ia supernova measurements are currently the
best source of information regarding possible deviations
of w(z) from a constant value. In the future, BAO mea-
surements will be a strong competitor and the combi-
nation of both will lead to the best possible constraints
on w(z). The complementarity of the different probes is
important to break degeneracies and decrease the overall
errors on the predictions. In our previous paper [16] we
showed that our non-parametric reconstruction method
is able to capture even rather sharp transitions in w(z)
well if we have very good knowledge about Ωm. Super-
nova data alone does not provide this information and
one needs a strong prior on Ωm to obtain good results.

This strong prior is justified from complementary probes.
A more direct implementation is therefore to include all
different probes into the analysis and derive a joint pre-
diction. This allows us to relax our prior assumptions on
Ωm and tighten our final constraints on the behavior of
w(z).

In the following, we provide a brief review of the differ-
ent dark energy probes we use in this paper – supernovae,
BAO, and CMB – and how to extract information about
w(z) from these probes. We focus in this paper on the
geometric probes for w(z). The GP analysis is in this
case very similar for all probes – w(z) is connected via
two derivatives with the different distance measures. In
the next section, we explain in detail how to set up a
joint GP model for these probes.

A. Supernova Measurements

We use in this paper the same notation as in our pre-
vious work [16]. For completeness, we summarize the
important equations here. The luminosity distance dL

as measured by supernovae is directly connected to the
expansion history of the Universe described by the Hub-
ble parameter H(z). For a spatially flat Universe, the
relation is given by

dL(z) = (1 + z)
c

H0

∫ z

0

ds

h(s)
, (1)

where c is the speed of light, H0, the current value of the
Hubble parameter (H(z) = ȧ/a, where a is the scale fac-
tor and the overdot represents a derivative with respect
to cosmic time), and h(z) = H(z)/H0. The assump-
tion of spatial flatness is in effect an “inflation prior”,
although there do exist strong constraints on spatial flat-
ness when CMB and BAO observations are combined
(see, e.g., Ref. [18]). In principle, we can relax this as-
sumption, but enforce it here to simplify the analysis.

Instead of dL(z), supernova data are usually specified
in terms of the distance modulus µ as a function of red-
shift. The relation between µ and the luminosity distance
is

µB(z) = mB − MB = 5 log10

(

dL(z)

1 Mpc

)

+ 25 (2)

= 5 log10

[

(1 + z)c

∫ z

0

ds

h(s)

]

− 5 log10(H0) + 25,

where we used Eq. (1). MB is the absolute magnitude
of the object and mB the (B-band) apparent magnitude.
Writing out the expression for the reduced Hubble pa-
rameter h(z) in Eq. (2) explicitly in terms of a general
dark energy equation of state for a spatially flat FRW
Universe:

h2(z) = Ωr(1 + z)4 + Ωm(1 + z)3 (3)

+(1 − Ωr − Ωm)(1 + z)3 exp

(

3

∫ z

0

w(u)

1 + u
du

)



leads to the relation

µB(z) = 25 − 5 log10(H0) (4)

+5 log10

{

(1 + z)c

∫ z

0

ds
[

Ωr(s)(1 + s)4 + Ωm(1 + s)3

+(1 − Ωr(s) − Ωm)(1 + s)3

× exp

(

3

∫ s

0

w(u)

1 + u
du

)]−1/2
}

.

While the term proportional to Ωr (the radiation density
for photons and neutrinos) is negligible at low redshift,
we include it in the equations for completeness – it will
become important for the CMB and BAO measurements.
We use the following relation for Ωr(z) when CMB is
added to the analysis:

Ωr(z) = Ωr(0)[1 + 0.227Nefff(mνa/Tν)], (5)

where for the standard three neutrino species, Neff =
3.04, we have mνa/Tν = 187/(1+z)Ωrh

2 ·103 and f(y) ≃
[1 + (0.3173y)1.83]1/1.83 (In the following, whereever we
quote values for Ωr they are quoted at z = 0.)

Note that H0 in Eq. (4) cannot be determined from
supernova measurements in the absence of an indepen-
dent distance measurement. Thus H0 can be treated
as unknown and absorbed in a re-definition of the ab-
solute magnitude MB = MB − 5 log10 H0 + 25, which
accounts for the combined uncertainty in the absolute
calibration of the supernova data, as well as in H0. Us-
ing this, the B-band magnitude can be expressed as
mB = 5 log10 DL(z)+MB where DL(z) = H0dL(z) is the
“Hubble-constant-free” luminosity distance (throughout
this paper we will follow the convention to use capital
letters for Hubble-constant-free distances and small let-
ters for distances measured in Mpc. Different papers use
different conventions.). The measurement of µB is only
a relative measurement and MB allows for an additive
uncertainty which can be left as a nuisance parameter.
To simplify our notation, we absorb 5 log10(H0)−25 into
our definition of the distance modulus, leading to:

µ̃B = µB + 5 log10(H0) − 25 = 5 log10[DL(z)]. (6)

With this definition of the distance modulus we have cal-
ibrated the overall off-set of the data to be zero. To ac-
count for uncertainties in this calibration, we introduce
a shift parameter ∆µ with a broad uniform prior. The
expected value for ∆µ = 0.

B. BAO Measurements

Baryon acoustic oscillations provide another powerful
measurement of the expansion history of the Universe.
Just as supernovae they yield a geometric probe of dark
energy. By carrying out measurements of the cluster-
ing along the transverse BAO scale one can obtain the

angular diameter distance dA(z), defined as

dA(z) =
1

1 + z

c

H0

∫ z

0

ds

h(s)
, (7)

and by measuring the BAO scale along the line of
sight, one obtains information on the Hubble parame-
ter H(z) itself (for details on future measurements, see,
e.g. Ref. [6]). Both of these measurements will be carried
out in terms of the sound at the epoch of baryon drag,
rs(zd), given by:

rs(zd) =
c√
3

∫ ∞

zd

ds

H(s)
√

1 + 3Ωb

4Ωr(1+s)

, (8)

and the final measurements will be in terms of dA(z)/rs

and H(z)rs. Current data provide information only on
the angular diameter distance. The structure of Eq. (7)
with respect to its w-dependence via two integrals is ex-
actly the same as for dL(z) given in Eq. (1). This makes
it very easy to carry through a similar reconstruction ap-
proach combining both probes.

C. CMB Measurements

For the CMB measurements we employ the so-called
shift parameter R(z⋆) first introduced by Bond et al. [19]:

R(z⋆) =

√

ΩmH2
0

c
(1 + z⋆)dA(z⋆)

=
√

Ωm

∫ z⋆

0

ds

h(s)
, (9)

where z⋆ is the redshift of decoupling (z⋆ ∼ 1090) and the
angular diameter distance dA is given in Eq. (7). The
shift parameter is related to the peak heights and the
locations of the peaks in the temperature power spectrum
of the CMB. As we will show in our analysis below, the
shift parameter is very helpful in breaking the degeneracy
between Ωm and w(z) when used in a combined analysis
with supernova data and was suggested in e.g. Ref. [20]
as a good summary for CMB measurements to simplify
dark energy investigations instead of using the full CMB
power spectra.

One caveat of using R as pointed out in, e.g., Ref. [18]
is the fact that R is a derived quantity from fitting to
the CMB power spectrum and therefore assumes a cer-
tain cosmology. It is hence important to state explicitly
the assumption made under which the best-fit value for
R was derived. Several groups including Refs. [20–22]
have studied this point in more detail and found that
the constraints on R are relatively stable under minor
modifications of the dark energy parameters underlying
the analysis, including dark energy clustering [22]. It
was found that massive neutrinos had a larger effect on
R (few percent level) [22]. In Ref. [20] an analysis of
WMAP-3 data was carried out and it was found that for



non-flat cosmologies, the value for R was very similar for
different dark energy models, including constant w and
time-varying w parametrized via w0 + wa(1 − a). In ad-
dition, the best-fit values for R in the current WMAP-7
analysis are the same within error bars for different un-
derlying cosmologies, including wCDM and open wCDM
models.

In our analysis of currently available data it should be
kept in mind that we use the best-fit value for R derived
under the assumption of a flat FRW universe with w =
−1, an effective number of neutrinos of Neff = 3.04 and
primordial power spectrum close to power law. As we
show below, the inclusion of R in the analysis in addition
to the supernova data does not alter the result for w(z)
itself, it mainly allows us to relax the assumption on Ωm.
We are therefore not too concerned that the value we use
for R was derived for a specific model. For our simulated
data, the value of R is obtained for the correct underlying
cosmology, in which case the above discussion does not
apply.

Another issue arises with the CMB measurement point
due to its high redshift. The SNe and BAO data points
live in a redshift range between z ∈ (0, 2) and therefore
we can set up a coherent non-parametric reconstruction
approach. The CMB data point on the other hand is a
single point around z ∼ 1000 leading to problems for any
non-parametric method. We have to make some assump-
tions about the behavior of w(z) in the range z ∈ (2,∞)
– the most natural choice is w = const.

III. RECONSTRUCTION WITH GAUSSIAN

PROCESS MODELING

A. Overview

We have recently introduced a nonparametric recon-
struction method based on GP modeling and Markov
Chain Monte Carlo (MCMC), and applied it to super-
nova data [16, 17]. We refer the reader to these papers
for details on the implementation of the GP model. Here,
we provide a general introduction and explanation of the
idea behind the reconstruction process with GP models
and then focus on how to extend the method to include
multiple data sources.

Gaussian processes extend the multivariate Gaussian
distribution to function spaces, with inference taking
place in the space of functions. The defining property of
a GP is that the vector that corresponds to the process at
any finite collection of points follows a multivariate Gaus-
sian distribution. Gaussian processes are elements of an
infinite dimensional space, and can be used as the ba-
sis for a nonparametric reconstruction method. Gaussian
processes are characterized by mean and covariance func-
tions, defined by a small number of hyperparameters [23].
The covariance function controls aspects such as rough-
ness of the candidate functions and the length scales on
which they can change, aside from this, their shapes are

arbitrary. The use of Bayesian estimation methods (in-
cluding the MCMC algorithm) allows us to estimate the
hyperparameters of the GP correlation function together
with any other parameters, comprehensively propagat-
ing all estimation uncertainties [24]. Using the definition
of a GP, we assume that, for any collection z1, ..., zn,
w(z1), ..., w(zn) follow a multivariate Gaussian distribu-
tion with a constant negative mean and exponential co-
variance function written as

K(z, z′) = κ2ρ|z−z′|α . (10)

Here ρ ∈ (0, 1) is a free parameter that, together with κ
and the parameters defining the likelihood, are fit from
the data (ρ and κ are the hyperparameters of the GP
model). The form of the assumed correlation function
implies that, theoretically, there is non-zero correlation
between any two points. ρ controls the exponential decay
of the correlation as a function of distance in redshift, but
it does not provide a bound for the correlation between
two points.

The value of α ∈ (0, 2] influences the smoothness of the
GP realizations: for α = 2, the realizations are smooth
with infinitely many derivatives, while α = 1 leads to
rougher realizations suited to modeling continuous non-
differentiable functions. Here we use α = 1 to allow for
maximum flexibility in reconstructing w. (For a com-
prehensive discussion of different choices for covariance
functions and their properties, see Ref. [23].) We set up
the following GP for w:

w(u) ∼ GP(ϑ, K(u, u′)). (11)

The process is started using a mean value of ϑ = −1,
given current observational constraints on w this is a
natural value. Even though the mean is fixed, each GP
realization actually has a different mean with a spread
controlled by κ and the means are adjusted during the
analysis to slightly different values suggested by prelimi-
nary runs (we use this strategy for some of the simulated
data sets below). This adjustment is purely informed by
the data and demonstrates the flexibility of the approach.
In principle, the mean could also be left as a free parame-
ter. After the adjustment we measure the posterior mean
and ensured that it is close to the prior mean.

B. Combining Multiple Data Sources

In order to determine the optimal values for the GP
modeling parameters and the cosmological parameters,
we follow a Bayesian analysis approach [25]. We use
MCMC algorithms to fit for the parameters [24], result-
ing in posterior estimates and probability intervals for
Ωm and ∆µ, and the hyperparameters that specify the
GP model, κ and ρ. We choose the following priors for
the hyperparameters:

π(κ) ∼ IG(6, 2), (12)

π(ρ) ∼ Beta(6, 1). (13)



Here the notation “∼” simply means “distributed ac-
cording to”. IG is an inverse Gamma distribution
prior, with the probability density function f(x; α, β) =
βαx−α−1Γ(α)−1 exp(−β/x), with x > 0. The probabil-
ity distribution of the Beta prior is given by f(x; α, β) =
Γ(α+β)xα−1(1−x)β−1/[Γ(α)Γ(β)] (for examples of these
distributions, see, e.g. [17]). For the cosmological param-
eters we choose:

π(Ωm) ∼ N(0.27, 0.042) SN data only, (14)

π(Ωm) ∼ U(0, 1) combined analyses, (15)

π(∆µ) ∼ U(−0.5, 0.5), (16)

π(σ2) ∝ σ−2 SN data, (17)

π(σ2
B) ∝ σ−2

B BAO data, (18)

U is a uniform prior, with the probability density func-
tion f(x; a, b) = 1/(b − a) for x ∈ [a, b] and 0 other-
wise. N is a Gaussian (or Normal distributed) prior with
the probability density function f(x; µ, σ2) = exp[−(x −
µ)2/(2σ2)]/

√
2πσ2. The squared notation for the second

parameter in N(µ, σ2) is used to indicate that σ is the
standard deviation (to prevent possible confusion with
the variance σ2). (The parameters in the U and IG do
not have this same meaning of mean and standard devi-
ation as in the Normal distribution.)

The prior for Ωm for the analysis of supernova data
alone is informed by the 7-year WMAP analysis [18] for
a wCDM model combining CMB, BAO, and H0 mea-
surement. Once a second cosmological probe is included
in the analysis, the assumption on this prior can be re-
laxed and we choose a uniform prior for the analysis of
the combined data sets. We also allow for an uncertainty
in the overall calibration of the supernova data, ∆µ. We
choose a wide, uniform prior for ∆µ.

Next we discuss the likelihoods for the different probes.
We assume that the SNe, CMB, and BAO measurements
are independent of each other which allows us to derive
a likelihood for each probe separately. The likelihood for
the supernova data is given by:

LSN(σ, θ) ∝
(

1

τiσ

)n

exp

(

−1

2

n
∑

i=1

(

µi − µ(zi, θ)

τiσ

)2
)

,

(19)
where θ encapsulates the cosmological parameters as well
as the hyperparameters, i.e., {∆µ, Ωm, κ, ρ}. σ2 is the
associated variable variance parameter. It is expected to
be close to one. For the CMB data we have an equivalent
expression:

LCMB(θ) ∝ 1

τz∗

exp

(

−1

2

(

y∗ − R(z∗, θ)

τz∗

)2
)

. (20)

Since we only have one data point, we cannot assign a
variance parameter. The likelihood for the BAO data is
slightly more complicated. For each BAO point we have
two observed distance measures. These measurements

(y1i, y2i) are correlated and we assume that they have a
correlated and bivariate Normal distribution, given by:

[

y1i

y2i

]

∼ MV N

[[

DA(zi)/rs

H(zi) ∗ rs

]

, σ2
BK

]

, (21)

where

K =

[

σ2
y1i

r12iσy1i
σy2i

r21iσy1i
σy2i

σ2
y2i

]

, (22)

and σB is the associated variance parameter. This leads
to the following likelihood for the BAO data:

LBAO(σB , θ) ∝ 1

|σ2
BK|m/2

exp

(

− 1

2σ2
B

m
∑

i=1

(

D
′
K

−1
D
)

)

,

(23)
with

D =

(

y1i − Da(z)/rs

y2i − H(z) ∗ rs

)

. (24)

We can find the combined likelihood simply by multiply-
ing the likelihoods since we assume the different probes
are uncorrelated:

Ltotal = LSNe ∗ LCMB ∗ LBAO. (25)

IV. RESULTS FOR CURRENT OBSERVATIONS

We start our analysis by reconstructing w(z) from cur-
rently available data. We use the supernova data set re-
cently released by Amanullah et al. [13]. This so-called
Union-2 compilation (extending the Union compilation
from Ref. [12]) consists of 557 supernovae between red-
shift z = 0.015 and z = 1.4. The magnitude errors in the
data set range between 0.08 and 1.02, with an average
error of ∼ 0.2.

In addition to the supernova data we include the most
recent BAO measurements from the Two-degree-Field
Galaxy Redshift Survey (2dFGRS) at z = 0.2 and the
Sloan Digital Sky Survey (SDSS) [26] at z = 0.35 given
by

rs(zd)/dV (z = 0.2) = 0.1905± 0.0061, (26)

rs(zd)/dV (z = 0.35) = 0.1097± 0.0036, (27)

where dV (z) = [(1 + z)2d2
Acz/H(z)]1/3. For the CMB

analysis, we use the most recent measurement of the shift
parameter R from WMAP-7 [18], given by

R(z⋆) = 1.719 ± 0.019. (28)

In order to have a complete description of the problem we
have to specify some additional cosmological parameters
that are expected to have little or no effect on dark en-
ergy. These parameters are: h = 0.7, Ωr = 4.897 · 10−5,
zd = 1020.3, z⋆ = 1090.79, and Ωb/Ωr = 914.54.
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FIG. 1: Results for reconstructing w(z) from currently available data. The top row shows reconstruction results for w(z) (red
line; the black dashed line shows w = −1) for an exponential covariance function, i.e. α = 1, including different cosmological
probes, the second row shows the corresponding posterior for Ωm (red lines: priors, black lines: posteriors). The first column
shows the results from supernova data only, the second column includes CMB measurements, the third column uses supernova
and BAO data, and the fourth column shows the results for a combined supernova-BAO-CMB analysis. The light blue
contours show the 95% confidence level, the dark blue contours the 68% confidence level. As to be expected, the error bars
shrink somewhat if more data sources are included, though the effect is small due to the limited number of extra data points.
As found previously by others (e.g. [27]), current data are consistent with a cosmological constant.

TABLE I: Union 2 Data set- 95% PIs, the last two columns are results from Ref. [13], Table 11 for comparison.

Data Type Ωm ∆µ σ2 ρ κ2 ϑ Ωm [13] w [13]

SNe 0.279+0.070
−0.074

−0.003+0.028
−0.028

0.985+0.124
−0.110

0.870+0.127
−0.303

0.353+0.393
−0.192

-1.00 0.270+0.021
−0.021

-1 (fixed)

SNe+BAO 0.302+0.051
−0.048

−0.004+0.028
−0.027

0.981+0.122
−0.109

0.864+0.132
−0.322

0.363+0.437
−0.202

-1.07 0.309+0.032
−0.032

−1.114+0.098
−0.112

SNe+CMB 0.274+0.049
−0.041 −0.002+0.028

−0.027 0.982+0.123
−0.109 0.865+0.132

−0.333 0.358+0.447
−0.199 -1.00 0.268+0.019

−0.017 −0.997+0.050
−0.055

SNe+BAO+CMB 0.289+0.044
−0.038

−0.005+0.027
−0.027

0.981+0.122
−0.109

0.869+0.127
−0.302

0.366+0.436
−0.201

-1.01 0.277+0.014
−0.014

−1.009+0.050
−0.054

We carry out four different analyses: supernova data
by themselves with a Gaussian prior for Ωm given in
Eq. (14), and combined analyses for supernova data and
CMB, supernova data and BAO, and for all three probes.
For the combined data sets we can relax the prior as-
sumptions on Ωm and use a wide uniform prior, given
in Eq. (15). The results are summarized in Table I and
Fig. 1.

All results are consistent with a cosmological constant,
i.e. w = −1, as can be seen in the first row in Fig. 1.
The supernova data by themselves have no constraining
power on Ωm and therefore force us to choose a rather
strong prior. The lower panels in Fig. 1 show the prior
(red line) and posterior (black line) for Ωm demonstrating
this point clearly. If we include either CMB or BAO or

both, the constraints on Ωm get much better. As can
been seen in Table I, the error estimates for Ωm shrink by
almost a factor of two if all probes are combined. Overall,
the supernova data by themselves lead to a slightly higher
value of Ωm, while the combination with CMB data leads
to a lower value. The inclusion of the BAO points shifts
up the value for Ωm considerably, by more than 10%
compared to the supernova–CMB analysis. Nevertheless,
within the error bars, all values for Ωm are consistent and
agree well with the best-fit WMAP-7 values including
different probes. The value for the shift parameter ∆µ is
very close to zero in all cases.

A brief comparison with Ref. [13] shows also very good
agreement. To make a comparison easy, we quote their
results in the last two columns of Table I for the case of



a flat Universe and w = const. The trends in the best-fit
value for Ωm are exactly the same as we find, the value is
lowest for the case of supernova+CMB data and highest
for supernova+BAO data. They also find that for the
supernova+BAO analysis, w is slightly below w = −1
while for all other cases it is very close to w = −1. Of
course also in their analysis everything is consistent with
a cosmological constant. It is very interesting to note
that our error estimates for w(z) are also very similar
to the findings of Amanullah et al., even though their
assumption of w = const. is very restrictive. This is
very encouraging since it shows that our method leads to
tight error bounds without losing the flexibility to find
time variations in w(z). In contrast, a w0 −wa fit would
have increased the error bars considerably.

V. RESULTS FOR SIMULATED DATA

In this section we investigate how well our method
works for reconstructing w(z) with future high-quality
data. Uncertainties in the data and limited statistics
prevent us from extracting possible time variations in
w(z) reliably from current data. The error bands are
still rather large and results are in complete agreement
with a cosmological constant. Future measurements will
hopefully change this: if there is a small time variation
in w(z) we should be able to detect it. In our previous
paper [16] we generated a supernova data set, assuming
high-quality measurements from a WFIRST-like mission.
We showed that a set of ∼ 2300 supernovae out to a red-
shift of z = 1.7 and perfect knowledge of Ωm allows us
to confidently extract time variations in the dark energy
equation of state. We also showed that larger uncertain-
ties in Ωm degraded this result due to well-known degen-
eracies between w and Ωm. These degeneracies can be
broken by including different data sources. We show in
the following that a combination of accurate supernova
data with results from a BAO survey such as BigBOSS
will provide excellent information to enable a reliable re-
construction of w(z). The combination of these different
data sources eliminates the degeneracy problem and pro-
vides reliable constraints on the time variation of w(z)
without “perfect” knowledge of Ωm.

A. The Simulated Data

We generate simulated data for all three probes (su-
pernovae, BAO, CMB) and three different cosmologi-
cal models. We use the same models as in our pre-
vious work (see Ref. [16] for more details). Model 1
has a constant dark energy equation of state w = −1,
Model 2 is based on a quintessence model with a min-
imally coupled scalar field and a dark energy equation
of state w(z) = (φ̇/2 − V0φ

2)/(φ̇2/2 + V0φ
2), and for

Model 3 we choose a slightly more extreme quintessence
model with w(z) = −1.0006 + 308472/(exp[20/(1 + z) +

617439]). The resulting equations of state are shown in
Figure 2. For each model we choose Ωm = 0.27 and
fix H0 = 70.4 km/s/Mpc, Ωb/Ωr = 915.15 = 0.0226,
Ωr = 4.982 · 10−5, z⋆ = 1090.89, and zd = 1020.5. While
Model 3 is already ruled out observationally it provides
a good example for a rather sharp transition in w(z).
For each model we create two data sets: (i) We assume
the best-possible scenario, a space mission to obtain su-
pernova measurements out to redshift z = 1.7 and in
addition a BigBOSS-like BAO survey, and CMB data;
(ii) good ground based supernova measurements in com-
bination with BigBOSS and CMB measurements. In the
following we provide some details on the assumptions for
the different data sets.

1. Supernova Measurements

As mentioned above we investigate two different sets
of simulated supernova measurements. The first one is
the same as we used in Ref. [16]. It contains 2298 data
points distributed over a redshift range of 0 < z < 1.7
with larger concentration of supernovae in the midrange
redshift bins (0.4 < z < 1.1) and at low redshift (z <
0.1). The exact distribution is shown in Ref. [16] in Fig.1.
For the distance modulus we assume an error of τi = 0.13.
The measurements are presented in the following form:

µ̃i = αi + ǫi. (29)

In this notation, the observations µ̃i follow a normal dis-
tribution with mean α(zi), the standard deviation being
set by the distribution of the error, ǫi, representing a
mean-zero normal distribution with standard deviation,
τiσ. Here, τi is the observed error and σ accounts for a
possible rescaling. In addition, we assume that the errors
are independent.

For the second set of simulated supernova data we con-
sider the same number of data points as currently avail-
able from ground-based surveys (557 measurements).
The redshift distribution is shown in Fig. 3. The dis-
tribution extends to z = 1.4 with a maximum at low
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FIG. 2: Dark energy equation of state w(z) for our three
simulated models.
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FIG. 4: Small supernova data set with error bars and the 3
simulated models.

redshift and around z = 0.3. Only a handful of super-
novae are available at higher redshifts. Since we assume
that the measurements are taken from the ground, we
increase the errors on the distance modulus to τi = 0.15.
Figure 4 shows the distance modulus redshift relation of
these measurements for Model 1 with error bars. The
exact relations for Model 2 and 3 are shown in addition.
The difference between the three models is very small,
making the reconstruction task a challenge.

2. CMB Measurements

For the CMB points we use the following realizations
(the exact values for R for each model are given in paren-
theses):

Model 1 : R(z⋆) = 1.736 ± 0.019 (Rex = 1.723),(30)

Model 2 : R(z⋆) = 1.716 ± 0.019 (Rex = 1.702),(31)

Model 3 : R(z⋆) = 1.683 ± 0.019 (Rex = 1.670).(32)
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FIG. 5: Two realization of 20 simulated BAO points for a
BigBOSS-like survey. Left column: angular distance diam-
eter, right column: Hubble parameter both in terms of the
sounds horizon. Model 1 (w = const.) is shown with error
bars with one standard deviation. For Model 2 (green dashed)
and Model 3 (blue dotted) we show the exact predictions.

3. BAO Measurements

Future BAO surveys such as BigBOSS will ob-
tain measurements of the angular diameter distance,
dA(z), as well as the Hubble parameter H(z), in
terms of the sound horizon at the epoch of baryon
drag, rs(zd). For our simulated BAO data sets follow
the specifications for a BigBOSS survey as outlined in
http://bigboss.lbl.gov/docs/BigBOSS NOAO public.pdf.
We assume a survey area of 24000 deg2 (covering north-
ern and southern skies) and adopt the galaxy density
distribution estimated in the BigBOSS proposal (Table
2.3 in the aforementioned document). In this proposal,
measurements from luminous red galaxies and emission-
line galaxies are combined. The resulting distribution
accounts for several sources of inefficiency (discussed
in the BigBOSS proposal) leading to a degradation of
the galaxy number density at high redshift. Often, a
constant galaxy density over the whole redshift range is
assumed. We studied this case as well and found that the
results in both cases are very similar. In order to derive
estimates for the errors of the simulated measurements,
we use a publicly available code introduced in Ref. [28].
The formula used to obtain BAO errors in this code is
a 2D approximation of the full Fisher matrix formalism.
In [28], the results for the full Fisher matrix calculation
and this method are shown to match well. Although
these results are for ΛCDM, they should hold for other



cosmologies.

The input parameter for the code are: σ8 at present,
Σ⊥ = Σ0G = transverse rms Lagrangian displacement,
with G = growth factor normalized such that G =
(1 + z)−1 at high redshift, Σ0 = 12.4h−1 Mpc for a
cosmology with σ8 = 0.9 at present and it scales lin-
early with σ8; Σ‖ = Σ0G(1 + f) = line of sight rms
Lagrangian displacement, with f = d(lnG)/d(lna), G, Σ0

as before; and the number density = 3 × 10−4h3/Mpc3

([6]). G, f, σ8 are input correctly for each model. The
biggest possible source of error is the formulae used for
Σ⊥, Σ‖, these were shown to be reasonable fits to the true
values in [29]. The value of Σ0 given is also for the cos-
mology used in [29]. For a different cosmology, Σ0 would
obviously be different, and the simplest way to deal with
this, as suggested in the paper, is to scale it linearly with
σ8. This may not be completely accurate as we use very
different cosmological models but should yield a reliable
estimate.

Figure 5 shows two realizations for a ΛCDM model
(Model 1) for the angular distance diameter DA(z)/rs in
the left column and for the Hubble parameter H(z)rs in
the right column. In addition, we show the exact predic-
tions for Model 2 and 3. We use two realizations for the
BAO data to elucidate the dependence of the reconstruc-
tion quality for different realizations.

B. Results

1. Prelude

Before we present our results for the combined analysis
of different cosmological probes we show the constraints
we obtain from the simulated BAO data alone on w(z).
The results are remarkably good. We choose a flat prior
for Ωm for this analysis.

Figure 6 shows the results for both realizations pre-
sented in Figure 5, Table II provides the best fit values
for Ωm all three models for the left column (Realization
I) and Table III for the right column (Realization II). For
Model 1 (first row) the predictions are slightly low for the
first realization but overall the results are consistent with
the input model., w = −1. We verified that this result
does not change considerably if the tighten the prior on
Ωm. Similar trends can be seen for Model 2 and 3. We
will come back to these trends later in the discussion on
the results for combined data sets. The value for Ωm

for realization I (Table II) is slightly high in all cases –
adding CMB measurements decreases the error on Ωm

but in fact shifts the best fit values even higher. The
second realization leads to values for Ωm very close to
the input value for BAO measurements only, the CMB
point again shifts it up slightly. The reconstruction from
the BAO data only works remarkably well, in all cases
the underlying model is captured within the error bars
reliably.

2. Combining Different Data Sets

Next we present the results for Model 1 - 3 for several
different combinations of data as discussed above:

Ground-based supernova mission (Figs. 7-9, upper rows;
Table II):� 557 supernovae out to z = 1.4, τi = 0.15� supernovae + CMB measurement� supernovae + 20 BAO points (realization I)� supernova + BAO + CMB measurements
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FIG. 6: Left column: reconstruction result for w(z) for re-
alization I of the BAO data later used in combination with
the small supernova sample. Right column: results for real-
ization II later used in combination with the large supernova
sample. Top to bottom: results for Models 1 - 3. The dashed
line shows the underlying theoretical model, the dark blue
region shows the 68% confidence level, the light blue region
the 95% confidence level, the dark blue line shows the mean
reconstructed history. In all cases, the reconstruction results
capture the “truth” within the error bands reliably.
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FIG. 7: Reconstruction results for the model with w = −1. From left to right different probes are considered, SNe, SNe+CMB,
SNe+BAO, and a combination of all three measurements. The red dashed line shows the truth, the blue solid line the mean
result for the reconstruction. The blue shaded region shows the 68% confidence level, the light blue shaded region the 95%
confidence level. The upper row shows the results for the small supernova data set (557 supernovae with τi = 0.15 out to
z = 1.4) while the lower row shows potential space-based supernova measurements (2298 supernovae with τi = 0.13 out to
z = 1.7). The CMB data point is the same in all cases where it is included, the BAO data are of same quality but two different
realizations out to z = 2. Note that the redshift range varies in the different panels depending on which probes are included.

Space-based supernova mission (Figs. 7-9, lower rows;
Table III):� 2298 supernovae out to z = 1.7, τi = 0.13� supernovae + CMB measurement� supernovae + 20 BAO points (realization II)� supernova + BAO + CMB measurements

As for the real data, we choose a stronger prior for
Ωm in the case of analyzing supernova data only while
we use a flat prior for any combination of data. Fig-
ure 7 shows the results for Model 1. The reconstruction
from supernova data only works very well – the additional
data points (comparing the upper and lower panel) help
reduce the error bands (note that the redshift range in
the lower row showing the results for 2298 supernovae
extends out further) and also lead to a better estimate
for Ωm with tighter error bounds, given in Tables II, III.
The addition of the CMB point (second column in Fig-
ure 7) allows us to choose a much less strict prior on Ωm,
i.e. a flat prior. Overall, the reconstruction works well
with the combination of supernova and CMB measure-
ments, the error bands on w(z) shrink considerably. The

estimate for Ωm is slightly too high leading to a small
overall underestimation of w(z) [we remind the reader of
the degeneracy of Ωm and w(z)]. In the third column we
show the supernova+BAO analysis. In this case, both
results extend to z = 1.7 due to the BAO data at those
redshifts. In the upper row, the supernova data only cov-
ers a redshift range out to z = 1.4, the overall result is
similar to the result from the BAO data only (Figure 6)
though the error bands shrink considerably. Combining
all three data sets leads to even narrower error bands
(fourth column). In the lower row the small downward
trend from the CMB point is compensated by the small
upward trend from the BAO measurements at high red-
shifts, leading to an almost perfect reconstruction result.
In the upper row, both CMB and BAO realization have a
small downward trend in w(z) which surveys in the final
result. Overall, the “truth” is captured well in all cases
and lies well within the error bounds. We would like to
emphasize that the dark blue line in the figures only rep-
resents the mean of the reconstruction result, much more
important are the error bands which have to capture the
true underlying model to establish a valid approach.

The results for Model 2 and 3 are similar, shown in
Figures 8, 9. Model 2 exhibits a small time variation
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FIG. 8: Same as in Fig. 7 but for Model 2, the quintessence model.

TABLE II: Posterior 95% PIs, 557 SNe points

Data Type Data Ωm ∆µ σ2 σ2
B ρ κ2 ϑ

SNe µ1 0.282+0.064
−0.069 0.003+0.026

−0.027 1.05+0.13
−0.12 n/a 0.87+0.12

−0.30 0.35+0.41
−0.19 -1.00

µ2 0.277+0.070
−0.075 0.002+0.026

−0.026 1.05+0.13
−0.12 n/a 0.88+0.12

−0.30 0.35+0.40
−0.19 -0.87

µ3 0.291+0.071
−0.082 0.007+0.027

−0.027 1.05+0.13
−0.12 n/a 0.85+0.14

−0.30 0.37+0.44
−0.21 -1.00

SNe+CMB µ1 0.293+0.043
−0.038 0.004+0.026

−0.026 1.05+0.13
−0.12 n/a 0.87+0.13

−0.30 0.36+0.41
−0.20 -1.07

µ2 0.297+0.046
−0.042 0.002+0.026

−0.025 1.05+0.13
−0.12 n/a 0.87+0.12

−0.31 0.36+0.45
−0.20 -0.94

µ3 0.277+0.065
−0.050 0.009+0.026

−0.026 1.05+0.13
−0.12 n/a 0.85+0.14

−0.31 0.37+0.46
−0.21 -0.78

SNe+BAO µ1 0.280+0.016
−0.015 0.004+0.023

−0.022 1.05+0.13
−0.12 0.89+0.60

−0.37 0.90+0.10
−0.26 0.34+0.40

−0.18 -1.04
µ2 0.280+0.017

−0.016 0.002+0.024
−0.023 1.05+0.13

−0.12 0.88+0.60
−0.36 0.88+0.11

−0.29 0.34+0.40
−0.19 -0.94

µ3 0.283+0.018
−0.019 0.008+0.026

−0.026 1.05+0.13
−0.12 0.88+0.61

−0.37 0.81+0.14
−0.26 0.39+0.48

−0.22 -0.73
SNe+BAO+CMB µ1 0.280+0.015

−0.015 0.004+0.023
−0.023 1.05+0.13

−0.12 0.89+0.60
−0.36 0.90+0.10

−0.26 0.34+0.39
−0.18 -1.05

µ2 0.280+0.016
−0.015 0.002+0.024

−0.023 1.05+0.13
−0.12 0.88+0.60

−0.36 0.88+0.11
−0.26 0.35+0.40

−0.19 -0.95
µ3 0.284+0.017

−0.017 0.008+0.026
−0.025 1.05+0.13

−0.12 0.87+0.60
−0.36 0.80+0.15

−0.26 0.37+0.42
−0.20 -0.73

BAO µ1 0.280+0.030
−0.028 n/a n/a 0.90+0.61

−0.37 0.88+0.12
−0.30 0.36+0.41

−0.19 -1.05
µ2 0.276+0.035

−0.032 n/a n/a 0.89+0.62
−0.37 0.86+0.13

−0.31 0.34+0.38
−0.18 -0.92

µ3 0.297+0.037
−0.044 n/a n/a 0.92+0.66

−0.39 0.82+0.16
−0.28 0.37+0.42

−0.20 -0.75
BAO+CMB µ1 0.281+0.025

−0.024 n/a n/a 0.89+0.61
−0.37 0.88+0.11

−0.28 0.35+0.39
−0.19 -1.07

µ2 0.279+0.029
−0.025 n/a n/a 0.89+0.61

−0.37 0.88+0.12
−0.29 0.35+0.41

−0.19 -0.95
µ3 0.296+0.035

−0.035 n/a n/a 0.92+0.66
−0.39 0.81+0.16

−0.31 0.37+0.41
−0.20 -0.74

which could be extracted from future data. The powerful
combination of all three probes can be gauged by the
relatively small error bands shown in the fourth column
in Figure 8. At low to intermediate redshifts (out to
z ∼ 0.6) a cosmological constant is clearly disfavored.
The supernova data alone would not have had enough
information to disfavor w = −1 at any redshift, the error
bands in this case clearly include a cosmological constant.

The inclusion of high redshift supernova data improves
the results somewhat, the overall reconstruction shown in
the lower left corner of Figure 8 is excellent with narrow
error bands. In this case, the constraints for Ωm are also
very close to the input value for the theoretical model
with tight error bands.

Model 3 has a rather strong variation in w(z). While
this model is observationally ruled out already, it pro-



0.2 0.4 0.6 0.8 1.0 1.2

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

z

SNe

w
(z

)

0.2 0.4 0.6 0.8 1.0 1.2

z

SNe+CMB

0.5 1.0 1.5

z

SNe+BAO

0.5 1.0 1.5

z

SNe+BAO+CMB

0.5 1.0 1.5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

z

SNe

w
(z

)

0.5 1.0 1.5

z

SNe+CMB

0.5 1.0 1.5

z

SNe+BAO

0.5 1.0 1.5

z

SNe+BAO+CMB

FIG. 9: Same as in Fig. 7 but for Model 3.

TABLE III: Posterior 95% PIs, 2298 supernova

Data Type Data Ωm ∆µ σ2 σ2
B ρ κ2 ϑ

SNe µ1 0.270+0.032
−0.043 −0.003+0.019

−0.018 0.97+0.06
−0.05 n/a 0.90+0.10

−0.27 0.34+0.37
−0.18 -1.00

µ2 0.263+0.046
−0.051 −0.004+0.018

−0.018 0.97+0.06
−0.06 n/a 0.90+0.10

−0.27 0.34+0.40
−0.18 -0.87

µ3 0.327+0.040
−0.070 −0.007+0.019

−0.019 0.97+0.06
−0.06 n/a 0.85+0.14

−0.32 0.35+0.40
−0.19 -0.92

SNe+CMB µ1 0.278+0.024
−0.024 −0.003+0.020

−0.019 0.97+0.06
−0.06 n/a 0.89+0.11

−0.32 0.34+0.39
−0.18 -1.04

µ2 0.279+0.027
−0.026 −0.006+0.019

−0.018 0.97+0.06
−0.06 n/a 0.90+0.10

−0.29 0.34+0.38
−0.19 -0.90

µ3 0.292+0.050
−0.043 −0.002+0.021

−0.020 0.97+0.06
−0.06 n/a 0.81+0.16

−0.29 0.40+0.48
−0.24 -0.82

SNe+BAO µ1 0.269+0.011
−0.011 −0.002+0.021

−0.019 0.97+0.06
−0.06 1.29+0.87

−0.54 0.88+0.12
−0.36 0.35+0.45

−0.20 -0.97
µ2 0.269+0.011

−0.010 −0.005+0.020
−0.018 0.97+0.06

−0.06 1.30+0.87
−0.54 0.89+0.10

−0.28 0.35+0.40
−0.19 -0.88

µ3 0.268+0.013
−0.015 −0.002+0.021

−0.022 0.97+0.06
−0.06 1.22+0.85

−0.52 0.75+0.21
−0.32 0.40+0.47

−0.22 -0.63
SNe+BAO+CMB µ1 0.269+0.010

−0.010 −0.001+0.018
−0.017 0.97+0.06

−0.06 1.31+0.88
−0.54 0.90+0.10

−0.30 0.35+0.42
−0.19 -1.00

µ2 0.270+0.010
−0.010 −0.004+0.018

−0.017 0.97+0.06
−0.06 1.31+0.88

−0.54 0.91+0.09
−0.29 0.34+0.40

−0.19 -0.90
µ3 0.269+0.011

−0.011 0.002+0.020
−0.021 0.97+0.06

−0.06 0.66+0.46
−0.28 0.76+0.18

−0.31 0.39+0.48
−0.21 -0.71

BAO µ1 0.270+0.036
−0.049 n/a n/a 1.33+0.92

−0.56 0.86+0.14
−0.31 0.35+0.41

−0.20 -1.00
µ2 0.264+0.037

−0.041 n/a n/a 1.33+0.92
−0.56 0.87+0.13

−0.31 0.35+0.40
−0.19 -0.88

µ3 0.278+0.052
−0.059 n/a n/a 1.35+1.03

−0.60 0.77+0.20
−0.30 0.37+0.45

−0.20 -0.68
BAO+CMB µ1 0.279+0.031

−0.025 n/a n/a 1.35+0.92
−0.56 0.88+0.11

−0.31 0.35+0.41
−0.19 -1.03

µ2 0.275+0.032
−0.027 n/a n/a 1.35+0.93

−0.56 0.88+0.11
−0.32 0.36+0.43

−0.20 -0.92
µ3 0.285+0.039

−0.044 n/a n/a 1.38+1.01
−0.62 0.78+0.20

−0.32 0.40+0.47
−0.22 -0.70

vides a good test bed for our new approach to demon-
strate that more complicated dark energy equation of
states can be reconstructed. As we discussed in detail
in Ref. [16] the degeneracy between Ωm and w(z) makes
the reconstruction task rather difficult – the left panels in
Figure 9 show the constructed w(z) from supernova data
only with a Gaussian prior on Ωm. The error bars are
rather wide and include a cosmological constant comfort-

ably. The addition of the CMB point already improves
the result considerably, in this case we choose a flat prior
on Ωm. The best-fit value for Ωm is very close to the
input value of 0.27 compared to the case where we ana-
lyze supernova data only. The inclusion of the BAO data
(third and fourth column) in both cases (557 and 2298
supernova data points) improves the results even more.
The time dependence is well captured and the estimate



for Ωm is also very good.
Some final remarks on the content of Tables II, III: in

addition to the results discussed above, we provide some
information on the results for the combination of BAO
and CMB measurements. Overall, the extra information
from the CMB measurement does not help very much to
improve the results, contrary to what we find when we
add this information to the supernova data. In addition
to the constraints on the cosmological parameters and
error behavior of the data (given by σ for the supernova
data and σB for the BAO data) we list the final hyper-
parameters for the GP model in the last three columns.
Maybe the most interesting parameter here is the ad-
justed mean value for w(z) given by ϑ in the last col-
umn. As we described in Ref. [16] in detail, we start the
GP model with some value for ϑ (in the case of Model 1,
ϑ = −1 is the natural choice for example) and run the
reconstruction program for some time. The results then
have information about an improved value for the mean
of the GP model and the analysis framework can be ad-
justed accordingly. As can be seen in the Tables, the final
values for ϑ are close to the mean value of the underlying
truth. The adjustment works extremely well, we started
basically all reconstruction evaluations at ϑ = −1 and
the GP model automatically suggest better mean values
if the choice was non-optimal. Overall, the reconstruc-
tion of w(z) works very well when multiple sources are
included.

VI. CONCLUSION

In this paper we have introduced a new non-parametric
reconstruction scheme for the dark energy equation of
state w(z) combining multiple cosmological probes. The
reconstruction scheme is based on a GP modeling ap-
proach and provides very good constraints on w(z) with
reliable error bars. The basic method was introduced
in Ref. [16] for supernova data only. Here we extend
the methodology to include also BAO and CMB mea-
surements. We have carried out an analysis of currently
available data and found excellent agreement with a cos-
mological constant consistent with a large number of re-
cent publications, including [12, 13, 18, 26, 27]. We have

also demonstrated our method on simulated data for dif-
ferent cosmological models. In all cases, the GP model
approach performed very well.

An important aspect of our new approach (as stressed
in Refs. [16, 17]) is the simultaneous constraint of the
cosmological parameters as well as the hyperparameters
of the GP model from the data. In comparison to para-
metric approaches, our new method is more flexible and
can therefore capture even subtle time variations in w(z)
if the data quality is good enough. It produces overall
narrow error bands over the full redshift ranges consid-
ered. For a more detailed comparison with parametrized
methods, see Ref. [16].

The combination of different data probes mitigates the
problem of degeneracies between w(z) and Ωm as to be
expected. An encouraging observation is that even from
BAO data alone of high quality from a BigBOSS-like
survey delivers good constraints on the time dependence
on the dark energy equation of state, clearly competitive
with space based supernova observations.

Our new non-parametric reconstruction approach
lends itself to analyze the promise of future dark energy
probes in a reliable way. For example, possible tension in
the data due to e.g. insufficient understanding of system-
atic errors would lead to an increase in the error bands
when combining different probes (a different attempt to
solve this problem with parametric methods is discussed
in e.g. Ref. [30]). The GP based approach can therefore
help to optimize future dark energy missions.
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